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In view of non-linear characteristics between fault symptoms and fault types of hydro-turbine generating unit and defects of 

traditional wavelet neural network learning method, a wavelet neural network fault diagnosis model based on simulated 

annealing algorithm is designed and applied to the hydro-turbine fault diagnosis. Instead of gradient descent method, the 

simulated annealing algorithm is applied to optimize parameters of wavelet neural network. Example results show that the 

designed model has higher convergence precision and faster convergence speed compared with wavelet neural network 

and additional momentum BP neural network. The simulated annealing algorithm wavelet neural network can be effectively 

applied to hydro-turbine fault diagnosis, and it provides a new way for hydro-turbine fault diagnosis. 
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1. Introduction 

 

Hydropower stations undertake the responsibility of 

frequency regulation, peak load and emergency reserve 

in electricity grid, and they play a significant role in 

improving the power supply quality, enhancing the 

economic performance and ensuring the safe and stable 

operation of electric power system. As the core of 

hydropower stations, hydropower units are being 

developed in the direction of large-scale, complicated 

and high-power. As a result, the structure of units 

becomes more complex and the degree of integration is 

improved, thus causing more potential safety problems. 

Efficient fault diagnosis of hydropower units has become 

an important subject in the field of hydropower units 

fault diagnosis. According to the statistics, over 80% of 

units’ fault can be demonstrated in its vibration signals 
[1]

. 

However, it’s quite difficult to establish the one-on-one 

matching between the vibrating features. And the causes 

of faults for the vibration signals of hydro units are 

nonlinear signals that may affected by hydraulic, 

mechanical or electrical factors, hence makes it difficult 

to conduct fault diagnosis of hydropower units. In 

consideration of the complexity, coupling of hydro 

turbine vibration faults, nonlinear diagnostic models are 

commonly used to realize the effective mapping between 

feature set and the fault set. The development of 

computer and artificial intelligence gives the fault 

diagnosis more choices, like the artificial neural network
 

[2]
, Bayesian network 

[3]
, support vector machine 

[4]
, etc. 

BP neural network is a widely used algorithm, however, 

the conventional BP network method has difficulties 

getting the optimal solution in the training process, for its 

disadvantages, such as slow convergence speed and easy 

to be caught in the local minimum point of the target 

function 
[5]

; Bayesian network has such disadvantages 

that it’s difficult to construct Bayesian network model 

and nodes’ conditional probability tables and to obtain 

the root nodes’ fault rates and fault probabilities 

accurately in Bayesian network method
[6]

; Support vector 

machine models are poor in the performance of classifier 

and generalization ability for the uncertainty of 

hyper-parameter selection
[7]

, and they have the 

disadvantages of low diagnostic accuracy and slow 

computing speed. 

Another rapidly developing signal processing 

method in recent years is the wavelet analysis technology. 

The free expansion and translation of wavelet basis 

function and its great time-frequency analyzing ability 

are the key factors that makes wavelet analysis a 

powerful tool in processing the non-stationary random 

signal. Combining with the artificial neural network, the 

wavelet analysis is able to provide a new method for the 

fault diagnosis field by constructing the wavelet neural 

network. The wavelet neural network is a new type of 

feed-forward network based on wavelet analysis that can 

adjust wavelet basis adaptively to realize the wavelet 

transform. Not only does it has the time-frequency 

localization property like the wavelet transform does, it 

also has the self-learning function of as conventional 

neural network provides, thus making the wavelet neural 

network a method with strong approximation capability, 
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fault-tolerant ability and pattern classification ability. 

And wavelet neural network is widely used in many 

areas 
[8,9]

. But there hasn’t been a specialized training 

method for wavelet neural network, and its general 

training is conducted using gradient descent algorithm 
[10]

, 

which affects the precision and speed of network training. 

Worldwide experts have proposed a lot of intelligent 

algorithms in optimizing wavelet network. Literature [10] 

and [11] optimized the wavelet neural network using 

particle swarm optimization and genetic algorithm 

respectively. These algorithms were applied to the fault 

diagnosis of gear case and power transformer 

respectively, improving the fault diagnosis accuracy and 

speed. However, convergence doesn’t perfectly happen in 

both particle swarm optimization and genetic algorithm
 

[12]
. For example, when there are several local extreme 

values, the function could be confused by the local 

minimum rather than finding the global optimal point. 

Therefore, it’s essential to develop an algorithm with 

strong search capacity in both local and global region. 

Simulated annealing (SA) algorithm is a stochastic 

optimization algorithm that can search for the optimal or 

near-optimal solution of the function throughout the global 

scope. The network can adjust in the direction of 

minimizing the target function and accepting the increase 

of the target function in a certain probability distribution 

according to the random changes of to-be-optimized 

variables, so as to prevent the network from falling into 

the local minimum and approach the global optimal 

solution 
[13]

. Kirkpatrick 
[14]

 has successfully introduced it 

to the usage of combinatorial optimization, and it was 

widely used in fields of image processing, communication 

and economy
 [15-17]

. We constructed the simulated 

annealing-wavelet neural network (SA-WNN) in this 

paper by combining simulated annealing and wavelet 

neural network together, and applied it to the fault 

diagnosis of hydropower units. Considering the spectrum 

signatures of hydropower units’ vibration signals and the 

fault types of hydropower units as the inputs and outputs 

of SA-WNN respectively, we constructed the SA-WNN 

model of hydropower units vibrating fault diagnosis. By 

using simulated annealing algorithm instead of gradient 

descent to optimize the parameters of wavelet neural 

network, we can realize the vibration fault diagnosis of 

hydropower units. The diagnostic results show that the 

proposed SA-WNN algorithm reduces the number of 

iterations, improves the convergence precision in 

comparison with the conventional BP neural network and 

wavelet neural network, thus providing a new method for 

on-line vibrating fault diagnosis of hydropower units. 

 

 

 

2. Principles of Simulated Annealing (SA)  

   Algorithm 

 

Simulated annealing (SA) algorithm derives from 

the solid annealing principle: First, heat the solid to a 

certain high temperature, at the same time particles inside 

the solid become disordered and the internal energy 

increases; Then, cool solid slowly and particles become 

orderly. During the period of cooling process, 

equilibrium state is achieved at each temperature. Finally, 

internal energy is reduced to minimum when the material 

is cooled to a specified low temperature. The energy 

function of SA algorithm is nonlinear, which contains a 

number of variables. The initial variables are randomly 

assigned. The variables are adjusted to minimize the 

energy function by searching back and forth. Due to the 

randomness of search process, SA algorithm will accept 

these points that increase energy function in accordance 

with the Boltzmann distribution to prevent falling into 

local minimum "trap". 

SA algorithm can be decomposed into three parts: 

solution space, objective function and initial solution. 

Four steps of generation and acceptance of new solutions 

are given as follows:  

step 1: Create a new solution located in the solution 

space by initial solution through generating function ; 

Usually, the way of generating new solution is to add 

random perturbation on basis of initial solution in order 

to shorten the time of subsequent calculation. 

step 2: Calculate the increment of objective 

functions between initial and new solutions. 

step 3：Determine the new solution is accepted or 

not. 

step 4: If the new solution is accepted, let it be the 

initial solution and begin next iteration. Otherwise, begin 

next iteration on the basis of initial solution. 

Basic processes of SA algorithm are shown as 

follows according to above principles: 

(1) Initialize parameters. Set initial temperature T0, 

initial solution S (S is the starting point of iteration), the 

value of iterations R to reach an equilibrium state at each 

temperature; 

(2) Do step (3) to (6), for m=1,..., R; 

(3)Generate new solution S′; 

(4) Calculate the increment of objective functions: 

ΔE= f(S′)-f(S), f is defined as objective function; 

(5) Judge whether the new solution can be accepted 

based on the Metropolis criterion; If ΔE<0, S=S', and S' is 

accepted. Otherwise, compute the probability of 

accepting S', p=exp (-ΔE/kT) , k is Boltzmann constant, T 

is current temperature; 
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(6) If the termination condition is satisfied, output S' 

as the optimal solution and end the program; Otherwise, 

go to step (3); 

(7) Reduce T gradually, and then turn to step (2); 

 

3. Wavelet Neural Network (WNN) 

 

Wavelet neural network(WNN) is a kind of 

feed-forward neural network based on the theory of 

wavelet transform and combines the localization 

properties of wavelet transform and neural network of 

large-scale data parallel processing, self-study ability, 

thus has strong approximation ability and faster 

convergence speed. WNN can be divided as loose type 

and compact type. This paper adopts the compact type of 

WNN. 

The structure of WNN is shown in Fig. 1, where M, 

n  and N are number of input layer nodes, hidden layer 

nodes and output layer nodes, 

respectively. x ( kx , 1,2,...Mk  ), o ( jo , 1,2,...j n ) 

and y ( iy ， 1,2,...Ni  ) are vectors of input layer, hidden 

layer and output layer, 

respectively. jkW ( 1,2,...j n ; 1,2,...Mk  )is weight 

parameters vector between input layer and hidden layer. 

ijV ( 1,2,...Ni  ; 1,2,...j n )is weight parameters vector 

between hidden layer and output layer. b ( jb ，
1,2,...j n )and a ( ja ， 1,2,...j n )are 

translation parameters vector and scaling parameters 

vector, respectively. h is the wavelet function. 

...
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Fig.1 Structure of a WNN 

Suppose that 
1

M

j jk k

k

net W x


 , the model of WNN 

can be expressed as equation (1):  

1

( )
n

j j

i ij

j j

net b
y V h

a




       (1) 

The training of WNN is similar to that of BP neural 

network: error function of WNN should be defined firstly. 

In this paper, the error function of the WNN is shown as 

equation (2): 
2

1 1

1
( )

2

L N
l l

i i

l i

E d y
 

         (2) 

Here, L is the number of training samples, 

id ( 1,2,...Ni  ) is the object output vector. 

 

4. Structure of simulated annealing-wavelet  

   neural network (SA-WNN) 

 

In this paper, a fault diagnosis model is proposed by 

combining simulated annealing algorithm and wavelet 

neural network (SA-WNN), the model structure is shown 

in Fig. 2. jkW , ijV ,b , a are to-be-optimized solutions. The 

objective function of SA-WNN is the error function of 

WNN. As the replacement of gradient descent method, 

the SA algorithm is adopted to optimize the parameters 

of the fault diagnosis model. 
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Fig.2 Structure of SA-WNN 

4.1 Principles of SA algorithm for optimizing  

   parameters 

 

SA algorithm includes three functions (generating 

function, acceptance function and cooling function) and 

two principles (inner loop termination criteria and 

external loop termination criteria), which have great 

impacts on optimization performance of SA algorithm. In 

this paper, they are designed as follows: 

(1) Generating function. The new solution is generated 

by applying random distortion which meets Cauchy 

distribution on initial solution. A control parameter is 
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given before the distortion so that local search could be 

realized by producing slight distortion with a larger 

probability and can walk out of the local minimum area 

by producing big disturbance appropriately. 

(2) Acceptance function. The acceptance function is 

shown as equation (3): 

1 , 0

, 0p

E

kT

E

p

e E




 


 
  

              (3) 

If 0E  or 0E  and p

E

kT
e


 > random [0,1],the new 

solution will be accepted, E denotes the increment of 

objective functions, pT denotes current temperature, k is 

Boltzmann constant. 

(3) Cooling function. The temperature is updated using 

the formula (4) [18]:  

 
0

1 ln( )p
TT

p


              (4) 

T0 is the initial temperature, p represents cool times. 

(4) Inner loop termination criterion. It’s used to 

determine searching times at each temperature. In this 

paper, we regarded that an equilibrium state could be 

reached at each temperature and the inner loop ends 

when inner loop iterate specified number R, where R=20. 

(5) External loop termination criteria. This paper adopts 

two methods: 

1) External loop iterate specified number Z, where 

Z=1000; 

2) E, the value of objective function, reduces to  , 

where =0.01; If external loop iterates more than 1000 

times and E> , the optimization fails. 

 

4.2 Steps of SA-WNN 

 

Process of SA-WNN is shown in Fig. 3: 

(1)Initialize solution and parameters, such as 

jkW , ijV , ja , jb ,T0,Z,R. For m=1,…,R, do step(2)to(6). 

(2)Calculate E, the value of objective function. If E< , 

output current solution and end the algorithm; Otherwise, 

turn to next step. 

(3)Generate new 

solution. *jk jk jkW W W   , *= +ij ij ijV V V ,

*= +j j ja a a , *= +j j jb b b , (0< <1)is a control 

parameter, calculate E’. 

(4)Calculate the increment of objective functions: 

ΔE=E-E’. 

(5)If 0E  or 0E  and
p

E

kT
e




>random[0,1], 

accept new 

solution, = *jk jkW W , = *ij ijV V , *j ja a , *j jb b Otherwise, 

go to step (3). 

(6) Repeat step (2) to (5) if the equilibrium state at 

current temperature hasn’t been reached. 

(7)Cool down T, p = p + 1, and repeat step (2) to (6). 

When external loop termination criteria is satisfied, end 

the algorithm. 
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Fig.3 Steps of SA-WNN 
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5. Hydro-turbine generating fault diagnosis  
  Example 
 
5.1 Determination of input layer, output layer and  

    hidden layer 

 

Vibration fault of a hydro-turbine generating unit are 

the synthesized reflection of hydraulic, mechanical and 

electric factors. The method, which takes amplitude of 

vibration signals frequency components as feature vector 

and employs neural network to realize the mapping from 

vibration feature set to fault set, is a common method for 

hydro-turbine generating unit fault diagnosis. In this 

paper, the amplitudes of vibration signals frequency 

components 0.4 ~ 0.5 f , 1 f , 2 f , 3 f  and 3 f  are 

chosen to form the feature vector of input layer, and 3 

fault conditions (vortex with eccentric, unbalance and 

misalignment) and normal condition of hydro-turbine 

generating unit are taken as fault types waiting to be 

recognized. Here, the letter “f” represents the 

fundamental frequency of hydro-turbine generating unit. 

The model of SA-WNN is employed to diagnose 

vibration fault of the hydro-turbine generating unit. To 

make the structure simpler and the result of the neural 

network more intuitive, the multi-input and single-output 

structure is employed. According to the characteristics of 

the training samples, the number of input nodes is chosen 

as 5 which is equal to the number of feature parameters, 

the number of output nodes is 1. The number of hidden 

layer nodes is chosen as 8 according to our experience. 

The objective values 1, 2, 3, and 4 are defined as the 

values corresponding to vortex with eccentric, unbalance, 

misalignment and normal machinery conditions, 

respectively. The normalized training and testing feature 

samples are shown in Table 1 and 2, respectively. 

 

Table 1 Training samples 

 

Fault types 
(0.4-0.5)f 1f 2f 3f >3f 

Object 

values 

Vortex with 

eccentric 
0.88 0.22 0.02 0.04 0.06 

1 

Vortex with 

eccentric 
0.85 0.25 0.06 0.02 0.01 

1 

Unbalance 0.04 0.98 0.10 0.02 0.02 2 

Unbalance 0.03 0.96 0.12 0.04 0.03 2 

Misalignment 0.02 0.41 0.43 0.34 0.15 3 

Misalignment 0.02 0.45 0.42 0.28 0.29 3 

Normal 0.01 0.02 0.01 0.05 0.04 4 

Normal 0. 10 0.03 0.02 0.03 0.04 4 

 

 

Table 2 Testing samples 

Fault types 
(0.4-0.5)f 1f 2f 3f >3f 

Object 

values 

Vortex with 

eccentric 
0.82 0.28 0.05 0.04 0.03 1 

Unbalance 0.02 0.91 0.08 0.01 0.02 2 

Misalignment 0.01 0.48 0.48 0.36 0.20 3 

Normal 0.10 0.03 0.02 0.03 0.04 4 

 

5.2Network training and analysis 

 

The wavelet basis function is set as the commonly 

used Morlet wavelet 

function
21

( ) cos(1.75 )exp( )
2

h t t t  , and the objective 

error E is set as 0.01. The value of error function is 

reduced to expectation error when the SA-WNN iterates 

84steps, which consumes 1.771 s. Training curve is 

shown in Fig. 4. 

In order to prove the effectiveness of SA-WNN 

diagnosis model, WNN and additional momentum BP 

network are chosen as comparison methods. The training 

method of WNN takes gradient descent algorithm, and 

the learning factor of WNN weights is set as 0.04. The 

structure of additional momentum BP neural network is 

5-8-1; It can be seen from these figures that the WNN 

needs 206 training times to reach the objective error and 

consumes 3.693s. The additional momentum BP network 

needs 542 training times to reach the objective error and 

consumes 10s. Training curves are shown in Fig. 5 and 6, 

respectively. 
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Fig.4 Training curve of SA-WNN 
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Fig.5 Training curve of WNN 
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Fig.6 Training curve of additional momentum BP 

 

The testing samples in Table 2 are used to test the 

obtained SA-WNN, WNN and the additional momentum 

BP network. Table 3 shows the test results. Table 4 

demonstrates the diagnosis error and training time of the 

three kinds of networks. 

 

Table 3 Diagnosis Results of Three Methods 

 

Fault types SA-WNN WNN BP 
Object 

values 

Vortex with 

eccentric 
1.0960 0.9896 1.0996 1 

Unbalance 2.0421 2.1618 2.1069 2 

Misalignment 2.9945 2.9291 2.8070 3 

Normal 4.0011 3.9944 3.8236 4 

 

 

Table 4 Error and Training Time of Three Methods 

 

Diagnosing 

methods 

SA-WNN WNN BP 

Diagnosing 

error 

0.0055 0.0156 0.0445 

Training 

time/s 

1.771 3.693 10 

 

As can be seen from table 3, the diagnosis results of 

three methods are all close to the target value aiming at 

the same fault, all three kinds of neural networks can 

recognize fault types of the hydro-turbine generating 

units. From Figures 4-5 and Tables 3-4, convergence 

time and diagnostic accuracy are significantly different in 

fault diagnosis of hydropower units among three methods. 

The additional momentum BP network is easy to fall into 

local minimum area, which makes it consume longest 

time, so it is difficult to meet the requirements of 

real-time diagnosis of hydropower units. Because of 

using gradient descent method to train the network, 

WNN iterates 206 steps and consumes 3.693s. After only 

84 iterations, the value of error function is reduced to 

0.01 with minimal training time and highest diagnostic 

accuracy by using SA-WNN. The results shows that the 

using SA algorithm to optimize the parameters of WNN 

can significantly improve the efficiency and convergence 

capacity of the network, and SA-WNN has stronger 

generalization ability than WNN and additional 

momentum BP network. 

 

6. Conclusions 

 

Considering the drawbacks of gradient descent 

algorithm of WNN, such as low convergence speed, 

falling into local minima easily, a SA-WNN diagnostic 

model is proposed in this paper for vibration fault 

diagnosis of a hydro-turbine generating unit. A real 

vibration fault diagnosis case result of a hydro-turbine 

generating unit shows that the proposed model has faster 

convergence speed and higher diagnostic accuracy than 

WNN and additional momentum BP neural network and 

turns out to be a good method for fault diagnosis of 

hydro-turbine generating units. 
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